How to Cite This Article: Khan, I. A., Khan, M., & Gulana. (2022). Comparative Study of Teachers and Students Perceptions towards Science Technology Society and Environment (STSE) Approach. *Journal of Social Sciences Review*, 2(3), 24–34.

Comparative Study of Teachers and Students Perceptions towards Science Technology Society and Environment (STSE) Approach

Iqbal Amin Khan	Lecturer in Department of Education, University of Malakand, Chakdara, KP, Pakistan.
Munir Khan	Assistant Professor in Department of Education, University of Malakand, Chakdara, KP, Pakistan.
Gulana	M. Phil Scholar in Department of Education, University of Malakand, Chakdara, KP, Pakistan.

Vol. 2, No. 3 (Summer 2022)

Pages: 24 - 34

ISSN (Print): 2789-441X ISSN (Online): 2789-4428

Key Words

STSE Approach, Scientific Thinking, Critical Thinking, Challenges, Science Teachers

Corresponding Author

Iqbal Amin Khan

Email: Iqbal.phd.edu@uom.edu.pk

Abstract: The main aim of this study was to compare the perceptions of secondary school science teachers and students towards Science, Technology, Society and Environment (STSE) approach. Quantitative survey design was used to investigate the problem. The population of the study consisted of all Government secondary school science teachers and students in the tehsil Adenzai. By using stratified sampling technique 90 science teachers and 737 science students were randomly selected for this study. A self-developed questionnaire consisted of multiple scales were used to collect data from the respondents. The study results show significant differences between the perceptions of science teachers and students regarding the concept of STSE approach, required training skills, social context of science, and usefulness of STSE approach for teaching of science. Rank order, frequency and percentage scores showed no difference between the perceptions of science teachers and students regarding aim of science education, hindering challenges in STSE approach and suggestions and recommendations for the implementation of STSE approach. It was recommended that science curriculum may be developed on the basis of STSE approach and science teachers may properly be trained to implement this approach in classroom for teaching science subjects

Introduction

In the twenty-first century, technology has evolved into a powerful force in society that both influences and is influenced by society. In this situation, a successful STSE integrated approach can provide a huge chance to thoroughly investigate the ethical and ontological questions of science, society, culture, and the individual in the context of mankind living in a technological civilization. STSE have been around for more than half a century, bringing with them a wealth of knowledge and proven research experiences. This integrated approach can provide more options for better science curriculum building

that differs from typical-teacher-student-subject-matter arrangements and the contexts in which science learning occurs (Ball, 2012).

Position and effect of science and technology in social life can be understood by STSE approach. STSE refers to teaching and learning of science in the context of daily life experiences (Zoller, 2000). STSE helps to understand the relations of science, technology and individual life. Yegar (1996) opined that STSE is an attractive and interesting approach which facilitates learning process for students.

Through this approach science teachers try to accomplish science teaching objectives in classroom (Lee & Erdogan, 2007).

The fundamental goal of science education is to equip students to be scientifically literate by teaching them to be critical thinkers who are also responsible for a variety of STSE concerns in science (Kolsto, 2001). He further stated that students must be aware of several opinions on a scientific subject before forming their own beliefs, that influenced by socio-cultural factors. As a result, using this approach help the students to understand the social context in which science occurs becomes critical. It is important to not undervalue the possible benefits of discussing STSE concerns in science classes and the relationship to a rich framework for scientific inquiry. Science courses often focus knowledge development in terms of acquiring new concepts, leaving limited area for original thought, challenging ideas, and/or debate. The inclusion of STSE topics in science lessons enables students to apply scientific ideas to the analysis of real-world problems, which in turn enables the development of cognitive abilities.

According to Zeidler, Keefer, and Abd-el-Khalid (2003) socially relevant scientific concerns draw students in, promote moral and ethical reflection, and aid in the whole development of pupils, including their cognitive abilities. If students can adapt and employ the concepts and skills on their own in new circumstances, this is actual evidence of learning. Yeager and Dweck (2012), highlighting the significance of cognitive development through creative thinking abilities. Learning of independent scientific concepts is encouraged by contextual factors related to scientific learning. According to Zeidler et al., (2009), when social issues are used as a background, students are more likely to find them personally relevant and approachable.

Although there are several options to use socio-scientific concerns in science lectures, STSE-based subjects appear to be limited in

science classroom since science teachers are typically hesitant to introduce challenging and debatable social issues rooted in science domains. Because STSE-based topics necessitate knowledge outside the science content basis, teachers and students are generally receptive to issue-based education within traditional science pedagogy (Hughes, 2000). In other words, teaching STSE-related subjects necessitates an interdisciplinary approach to science education, in which the overlap between scientific concepts and society is recognized and explored.

Teachers face structural hurdles when conducting issue-based class discussions. Teachers in high school classrooms who want to teach an overcrowded science class encounter a number of challenges, including huge class sizes, overcrowded curriculum, and handling new curricular content (Hughes, 2000). Large class sizes limit students' ability to express their thoughts and ideas. Even when the teacher facilitates encourages and students participate in conversation, there is less chance for all students to convey their perspectives in such huge courses (Levinson, 2006). Science teachers are hesitant to incorporate socioscientific topics into their classes because they are afraid of getting lost the theoretical body of scientific knowledge. According to Hughes (2000), when there is considerable treatment of social science topics, teachers grow concerned that the pure science content within the science curriculum would be neglected.

Statement of the Problem

Science students rarely perceive their studies as being relevant to or applicable to their own life in actual science courses. The input of teachers and their views or beliefs regarding such innovations are now key factors in the implementation of STSE in science courses. Science teaching within the STSE paradigm is created by the teacher and the students working together, or it is created by student recommendations based on their interests and current problems in their lives.

Therefore, it is crucial to take students' opinions, interests, and attitudes into account while creating science courses. The biggest factor in the change to STSE education is science teachers. A science teacher must, therefore, have a thorough understanding of STSE education and the theory underlying it for a change to be successful. For instance, Noss and Hoyles (1996) contend that any innovation that is implemented without taking into consideration the teachers, students, and their workplace circumstances as facilitators of the innovation is likely to fail. Mansour (2007) and Waks, (1987) stated that STSE education's main goal is to give students a contextual understanding of modern science and well as the intellectual technology as groundwork for responsible citizenship. The emphasis on the connections between science, technology, society, and the environment within STSE in science education has necessitated a focus science-related social environmental issues. STSE is necessary to give students the tools they need to become active citizens (Kolstoe, 2001). It is obvious that the STSE approach is valued by the science education community when it is incorporated into science education programmes. Therefore, it is worth to raising question: what are science teachers and students' beliefs concerning the STSE approach and related issues? This is what this study had focused on.

Research Objectives

The objective of the study was to compare the perceptions of science teachers and students towards STSE approach in High/Higher Secondary Schools of Lower Dir. Based on this research objective the following research question sought to be answered.

1. Is there any significant difference between the perceptions of science teachers and students of government secondary schools regarding STSE, challenges faced by them and its applications?

Research Methodology

The current study used quantitative approach to get the answer of the above mentioned question. Descriptive (survey) method was used to collect and analyze the data. The population of the study included all the secondary school science teachers and students in district Dir Lower. The researchers selected 90 science teachers (50 male and 40 female) and 737 science students (400 boys and 337 girls) from 41 secondary schools of tehsil Adenzai through simple random sampling method.

Data was collected through using the questionnaire based on review of related literature for measuring/knowing the opinions of science teachers towards STSE approach. The opinions of students were crossly verified through same questionnaire. The questionnaire was developed on the basis of various scales like Likert, Semantic differential, rating Thurstone. The rational of using various was to make the questionnaire easy and interesting for respondents and enhances its validity and reliability. After establishing the face and content validity of the instrument was piloted with the same identical science teachers and students in the sample. The experts were asked to fill the questionnaire and point out the ambiguity in the items or in directions. Through Cronbach alpha α , the reliability of the instrument was established. The Cronbach alpha value for the questionnaire was found 0.84, which was found higher than that of threshold frequency.

Data Analysis

As nature of the study was quantitative, therefore, data were analyzed by using SPSS. Perceptions of teachers and students were compared using independent sample t-test. Collected data was entered into spread sheet and was analyzed as:

 Comparison between the overall opinion of teachers and students regarding STSE approach Table shows the differences between the perceptions of teachers and students. Collected

data was analyzed using independent t-test sample for the given statements.

Table 1. Comparison between the perceptions of science teachers and students regarding the STSE approach

Statements	R	N	М	SD	Std. Error Mean	t	p
Understanding the concept of STSE in the local learning	Teachers	90	2.82	.488	.051	2.05	.040
context	Students	737	2.91	.357	.013	2.0)	.040
My teacher have tried to teach	Teachers	90	2.49	.753	.079	8.22	.000
this way	Students	737	2.90	.390	.014	0.22	.000
I want to learn in this way	Teachers	90	2.89	.390	.043	7/0	/ = /
i want to learn in this way	Students	737	2.92	.330	.012	.749	.454
Not convincing that it is the	Teachers	90	2.23	.765	.081	- (-	222
best approach for my country	Students	737	2.64	.622	.023	5.65	.000
Limited time makes this concept	Teachers	90	1.99	.814	.086		
impracticable	Students	737	2.02	.860	.032	.329	.742
Overall opinion	Teachers	90	2.4844	.35850	.03779	6.73	.000
	Students	737	2.6757	.23859	.00879	0.75	

df= 825 Level of significance = .05

It is obvious from the analysis in the above table that teachers and students behave differently towards the statement *I understand what STSE means in the context of my own learning* as the calculated value for t-test was found to be less (.000) than the tabulated value .05 level of significance (p<.05). second statement *My teacher have tried to teach this way* shows less calculated value for t-test tan tabulated value .05 level of significance. It shows that there is highly significant difference between the perceptions of

teachers and students. The third and last statements: *I want to learn this way*, *Time constraints make this approach impossible* also shows greater calculated value for t-test than tabulated value .05 (p..05) Which shows that there is no significance difference between the perceptions of teachers and students. Overall calculated value for t-test was found to be less (.000) than calculated value (p<.05) therefore there is highly significant difference between the perceptions of teachers and students.

Table 2. Frequency and percentage for the comparison of the perceptions of teachers and students regarding the aims of sciences

Statements	Teachers			Students			
Statements	Frequency	%age	Ranking	Frequency	%age	Ranking	
Acquiring good marks in the examinations	12	13	8	346	47	3	
To think of becoming scientists in careers	34	38	5	219	30	5	

To understand something of how the world works	44	49	3	400	54	2
To equip to think scientifically and rationally	58	64	1	172	23	6
Knowing scientific facts accurately	46	51	2	439	60	1
Understanding of the scientific facts which changes world	41	45	4	296	40	4
Showing that scientific results can benefit and hurt human beings	22	24	7	297	40	4
Covering the burdened curriculum in allotted time	14	27	6	41	5	7

Table shows that both the group are responding in a different way as; the highest proportion of teachers 58(64%) chooses the statement 'To equip to think scientifically', while most rated option for students with 439(60%) proportions highlighted 'To know the facts of science correctly' as their first priority of science teaching and learning. Second most popular option for

teachers was 'To know the facts of science correctly' with 46(51%) response rate, and 'To understand something of how the world works' stand out as second priority for 400(54%) students. 'To gain good grades in examinations' was found to be the 346(47%) student's third priority while the same statement was observed to be the last priority of 12(13%) teacher.

Table 3: Comparison in the perceptions of science teachers and students regarding the training skills

Statements	R	N	М	SD	Std. Error Mean	t	р
My training did not really prepare me well for teaching	Teachers	90	2.81	1.14	.120	3.66	.000
	Students	737	2.25	1.39	.051		
Never been trained to teach and	Teachers	90	3.34	1.14	.121	621	000
encourage to implement STSE	Students	737	2.39	1.36	.050	6.34	.000
Need training in teaching	Teachers	90	4.07	.761	.080		
effectively by using this approach	Students	737	3.51	1.40	.052	3.70	.000
Need training to know	Teachers	90	4.03	.917	.097		
assessment techniques by using STSE approach	Students	737	3.30	1.46	.054	4.64	.000
Overall	Teachers	90	3.56	.697	.073	- 5.61	.000
	Students	737	2.86	1.15	.042	- 5.01	.000

Perceptions of teachers and students are very different as the calculated value for t-test of all the statements was found to be very less (.000) than the tabulated value .05 level of observance (p<.05), which shows that there is highly significant difference between the perceptions of

teachers and students. Overall calculated value for t-test was also found to be very less than the tabulated value .05 level of observance (p<.05), therefore the perceptions of teachers and students are highly different.

Table 4: Frequency and percentage for the comparison in the perceptions of science teachers and students regarding the challenges hindering STSE approach

Statements	Teachers			Students		
	Frequency	%age	Ranking	Frequency	%age	Ranking
Overcrowded curriculum	61	68	2	353	48	3
Lack of experience	14	15	8	77	10	7
Lack of training	36	40	5	195	26	5
National examinations	24	27	7	377	51	2
Lack of money	41	45	4	345	47	4
Lacking student's interest	43	48	3	379	51	2
Lacking equipment	85	94	1	440	60	1
Unsuitable textbooks	35	39	6	164	22	6

Both the groups were having similar opinions regarding the first option as highest proportion of teachers 85(94%) and 440(60%) of students had marked 'lack of equipment'. 61(68%) teachers opted for 'overcrowded curriculum' and 43(48%) teachers chose 'lack of student's interest' as their second and third priority. Students are responding in a different way as they chose

'National examination' 377(51%) and 'overcrowded curriculum '353(48%) as their second and third most rated options. Teacher's less rated option with 24(27%) proportions is 'National examination', whereas the same statement was found to be the student's second most rated option with 377(51%) proportion.

Table 5: Comparison in the perceptions of teachers and students regarding the social context of sciences

Statements	R	N	М	SD	Std. Error Mean	t	р
STSE is a good approach	Teachers	90	5.80	.524	.055	1.286	.199
	Students	737	5.88	.543	.020		
STSE approach is exciting for	Teachers	90	5.31	1.395	.147	1.733	.083
me	Students	737	5.54	1.146	.042		
STSE approach is boring for	Teachers	90	5.02	1.565	.165	2.839	.005
students	Students	737	5.43	1.264	.047		
STSE is helpful for studying of	Teachers	90	4.68	1.823	.192	4.09	.000
science to pass exams	Students	737	5.37	1.469	.054		
STSE approach is too	Teachers	90	3.04	2.19	.232	2.246	.025
demanding on time	Students	737	3.61	2.24	.083		
STSE approach is a demanding	Teachers	90	3.00	2.12	.223	7.15	.000
way	Students	737	4.59	1.98	.073		
STSE approach is consistent	Teachers	90	4.80	1.73	.182	1.10	.271
with curriculum goals	Students	737	5.01	1.75	.064		
STSE is a new untested	Teachers	90	3.09	2.21	.234	6.97	.000
approach	Students	737	4.70	2.04	.075		
STSE is inconsistent with	Teachers	90	4.09	2.04	.215	7.35	.000
textbooks in use	Students	737	5.35	1.46	.054		
Overall	Teachers	90	4.3148	.892	.094	8.620	.000

Students	737	5.0547	752	027

The above table shows that both groups consider this approach 'Good' and 'exciting' as the calculated value for t-test regarding the first and second statement is greater than tabulated value .05 level of significance (p>0.5) therefore there is no significant difference between the perception of teachers and students. For third and fourth statement calculated value for t-test was found to be less then tabulated value .05 level of significance (p<.05) Therefore the perceptions of teachers and students are different. Calculated value for seventh statement was also found to be

greater than .05 level of significance (p>.05) which shows that no significant difference between the perceptions of both groups. Remaining statement shows very less calculated value for t-test then tabulated value .05 level of significance (p<.05) therefore the perceptions of teacher and students are different. Overall value for the construct was also found to be very less (.000) then tabulated value .05 level of significance (p<.05) therefore the perceptions of teachers and students are different regarding the teaching of sciences in social context.

Table 6: Comparison in the Perceptions of science teachers and students regarding the STSE approach in science education

Statements	R	N	М	SD	Std. Error Mean	t	р
This approach will not be useful	Teachers	90	3.81	.820	.086	6.92	.000
for students	Students	737	4.36	.693	.026	0.92	.000
Relating science with real life of	Teachers	90	4.38	.572	.060	.822	.411
students	Students	737	4.45	.750	.028	.022	.411
Appreciating how this approach	Teachers	90	4.32	.650	.069	1.18	.236
works better for students	Students	737	4.42	.735	.027	1.10	.250
Communicating verbally to	Teachers	90	3.89	.661	.070	1.15	.250
learn science well	Students	737	4.07	1.46	.054	1.1)	.2,0
In science education issues	Teachers	90	4.33	.636	.067		
related to environment and social are discussed	Students	737	4.20	.858	.032	1.47	.140
STSE approach helps to discuss	Teachers	90	4.02	.821	.087	F / F	5 06
global and local issues	Students	737	3.96	1.00	.037	.545	.586
This approach needs a lot of	Teachers	90	4.20	.737	.078	2.66	000
supports for implementation	Students	737	3.88	1.09	.040	2.00	.008
Pressurized curriculum do not allow me to teach through this	Teachers	90	3.11	1.146	.121	2.30	.021
approach	Students	737	3.44	1.278	.047		
Major financial support is	Teachers	90	4.01	1.00	.105	422	666
required to teach in this way	Students	737	4.07	1.13	.042	.432	.666
STSE helps to understand scientific facts effectively	Teachers	90	1.66	.737	.078	3.96	.000
	Students	737	2.15	1.150	.042	<i>J</i> ,	
Using this approach will lost the true nature of science	Teachers	90	3.56	1.25	.132	1.24	.214
	Students	737	3.35	1.48	.055	1.24	•214

Overall	Teachers	90	3.7535	.344	.03632	2 5 5	.011
	Students	737	3.8486	.331	.01223	— ∠.))	.011

From the above table it is clear that the calculated value regarding first statement 'The STSE approach will not prove attractive for students' was found to be very less (.000) than the tabulated value .05 level of significance (p<.05) therefore there is significant difference between the perceptions of teachers and students. For second, third, fourth, fifth and sixth statement, the calculated value for t-test was found to be greater than tabulated value .05 level of significance (p>.05) which shows that there is no difference between the perceptions of teachers and students. Statements: 'I need major support to prepare for this approach', 'The curriculum is so pressurized that I cannot teach this way' shows that

the calculated value for t-test was found to be less than tabulated value .05 level of significance, therefore the perceptions of teachers and students are significantly different. 'The approach will require major financial support' and 'the true nature of science will be lost if we use this approach', shows high calculated value for t-test than tabulated value .05 level of significance (p>.05), therefore there is no difference between the perception of teachers and students. Overall value of the construct for t-test was found to be less than tabulated value which shows the significant difference between the perceptions of teachers and students.

Table 7: Frequency and percentage for the comparison between the suggestions and recommendations by teachers and students

Statements	Teachers			Students			
	Frequency	%age	Ranking	Frequency	%age	Ranking	
Curriculum should be consisted of STSE approach	50	55	1	302	41	1	
Facilities must be provided for successive implementation of STSE	10	11	4	260	34	2	
Appropriate training for implementation of STSE is required	13	15	3	107	14	3	
Financial resources are required	17	19	2	82	11	4	

Views of science teachers and students were found to be same in responding about the first statement as more than half (N=50, 55%) of science teachers and highest proportions of students (N=302, 41%) answered that STSE approach should be the part of science curriculum. Maximum number (N=17, 19%) of science teachers stated financial resources as

their second rated option, whereas major proportion of students (N=260, 34%) suggested the allocation of physical facilities to schools. Both of the group was found having similar views regarding their third answer where 17(19%) teachers and 82(11%) students suggested proper training about STSE.

Discussion

Significant differences were found between the perceptions of science teachers and students regarding understanding the meaning of science in local context, teacher trying to teach by using STSE approach, and not convincing that STSE is the best approach for Pakistan while no significant differences were found between the perceptions of science teachers and students regarding want to learn in this way and time constraints make this approach impossible in this context.

Both science teachers and students agreed that aims of teaching sciences are to equip students to think scientifically, learning of scientific facts, understanding of how the world works, to get good marks in examinations, becoming scientists in career, cover curriculum in allocated time and scientific findings may be utilized to provide benefits or harm the human society. Significant differences were found between science teachers and students regarding common training is not enough to prepare science teachers to teach effectively in classroom, science teachers needs special sort of training to implement this approach during instruction and science teachers also need training to use appropriate assessment techniques. Both science teachers and students agreed that lack of equipment, lack of student interest. overloaded curriculum, financial resources, lacking of appropriate training, and inappropriate textbooks are the major challenges hindering STSE approach.

Significant differences were found between the views of science teachers and students regarding STSE is a good approach, exciting approach, and is consistent with curriculum goals. While no significant differences were found between science teachers and students regarding boring for students, helpful for studying of science to pass examinations, too demanding on time, a new untested approach and inconsistent with textbooks in use. Significant differences were found between science teachers and students regarding STSE is

not proved to be attractive, require a lot of supports for implementation of this approach, overloaded curriculum do not allow to teach through STSE and science education must focus on the scientific facts. While no significant differences were found between the perceptions of science teachers and students regarding understanding of students to relate it with practical life issues, appreciate the approach by students, learning to communicate verbally by students, importance of social environmental issues, discussion of local and global issues, requirement of financial resources and losing of true nature of science. Both teachers and students agreed that STSE must be incorporated in science curriculum implemented in classroom, financial resources be provided to schools and science teachers must be provided training about STSE.

Students bear the great responsibility of making choices that call for knowledge of how science and technology interact with one another and with society and the environment. Although the STSE movement has been closely associated with achieving this aim, it has proven challenging to put theory into reality. It has been proposed that scientific education should focus more on the STSE in response to the urgent requirements of contemporary societies. According to Zeidler et al., (2009), science is rooted in socially-related issues and can drive participation in conversations that 'unearth' personal links and linkages to controversial scientific questions". According constructivist viewpoint, which Watts (1994) referred to, science needs to be applicable to students' daily lives because this actual context serves as the foundation for their studies. It must be relevant to their interests and current lifestyles, to current events and television news, and to global citizens and customs (Mansour; 2007).

Conclusions

It is concluded that both science teachers and students agreed that STSE is an effective approach for teaching of science subjects. However, due to some constraints like time and resources the implementation of this approach is not possible. Both science teachers and students perceived that the major aim of STSE approach is to think scientifically and knowing the scientific facts. Both science teachers and students agreed that implementation of STSE approach in classroom require special kind of training. However, the training obtained by science teachers do not help them to prepare them to implement STSE approach in classroom. It was concluded that both science teachers and students agreed on the importance of STSE approach. However, there are some challenges to which this activity-based and experimentation approach cannot be implemented. These challenges include the overloaded curriculum, lack of available physical and financial resources.

Significant differences were found between the perceptions of science teachers and students regarding STSE is a boring approach, helpful for passing of examination, too demanding on time, a new untested approach and is inconsistent with textbooks in use. While non-significant differences were found between the perceptions of science teachers and students regarding STSE is a good approach, an exciting approach and is consistent with curriculum goals.

No significant differences were found and between science teachers students regarding using STSE approach will ensure to make relationship of science with appreciation of science by students how it works better to solve life related problems, communicate science verbally, importance of understanding social and environmental issues, discussing local and global issues, require major financial resources and losing of true nature of science. On the other hand significant differences were found between science teachers and students perceptions regarding STSE is not attractive for students, require main support from stakeholders, pressurized curriculum doesn't allow to implement in classroom and science education focus on scientific facts. Both science teachers and students agreed that STSE based curriculum may be developed, a lot of resources and facilities are required for the implementation of STSE approach, training for using this approach must be provided to science teachers and financial resources be provided to implement this approach in classroom teaching.

Recommendations

The researchers offered following recommendations to Government, policy makers, curriculum developers, and science teachers for the implementation of STSE approach.

- 1. It was recommended that government and policy makers must ensure the science curriculum development based on STSE approach. This may be possible if curriculum developers are assigned the task to develop curriculum based on this approach. The involvement of science teachers in this process may validate and authenticate the process.
- To ensure the implementation of this approach in the teaching of science subjects in classrooms, science teachers may be provided in-service training to enrich their understanding implementation regarding this approach. The development of low cost materials for teaching and the solution of day to day problems through this method will be a worthwhile strategy for its implementation.

It is recommended that science subject's curriculum must be integrated with society and environment issues. So that students may be able to resolve societal and environmental issues. Science teachers must ensure the use of instructional technology for teaching learning process. Use of innovative assessment techniques during examinations and tests can ensure the evaluation of students' scientific and critical thinking abilities.

References

- Ball, P. (2012). Why society is a complex matter: Meeting twenty-first century challenges with a new kind of science. Springer Science & Business Media.
- Hughes, G. (2000). Marginalization of socioscientific material in science—technology—society science curricula: Some implications for gender inclusivity and curriculum reform. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 37(5), 426–440.
- Kolsto, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. *Science education*, 85(3), 291–310.
- Lee, M. K., & Erdogan, I. (2007). The effect of science—technology—society teaching on students' attitudes toward science and certain aspects of creativity. *International Journal of Science Education*, 29(11), 1315–1327.
- Levinson, R. (2006). Towards a theoretical framework for teaching controversial socioscientific issues. *International Journal of Science Education*, 28(10), 1201–1224.
- Mansour, N. (2007). Challenges to STS education: Implications for Science Teacher Education. Bulletin of Science, Technology & Society, 27, (6), 482–497.
- Noss, R., & Hoyles, C. (1996). Windows on mathematical meaning, Dordrecht: Kluwer Academic Publishers.
- Waks, L. J. (1987). A technology credo. Bulletin of Science, technology & Society, 7(1–2), 357–366.

- Watts, M. (1994). Constructivism, reconstructivism and task-orientated problemsolving. In P. Fensham, R. Gunstone, & R. White (Eds.), The content of science: A constructivist approach to its teaching and learning (pp. 39-58). London: The Falmer Press,.
- Yager, R. E. (Ed.). (1996). Science/technology/society as reform in science education. Suny Press.
- Yeager, D. S., & Dweck, C. S. (2012). Mindsets that promote resilience: When students believe that personal characteristics can be developed. *Educational psychologist*, 47(4), 302–314.
- Zeidler, D. L., & Keefer, M. (2003). The role of moral reasoning and the status of socioscientific issues in science education: Philosophical, psychological and pedagogical considerations. In D. L. Zeidler (Ed.). The role of moral reasoning on socioscientific issues and discourse in science education. (pp. 7–38). The Netherlands: Kluwer Academic Publishers
- Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009). Advancing reflective judgment through socioscientific issues. *Journal of Research in Science Teaching:* The Official Journal of the National Association for Research in Science Teaching, 46(1), 74–101.
- Zoller, U. (2000). Teaching tomorrow's college science courses—are we getting it right? *Journal of College Science Teaching*, 29(6), 409.