Volume 4, Issue 4 (Fall 2024)

Pages: 154-168

ISSN (Online): 2789-4428 DOI: 10.54183/jssr.v4i4.442

JOURNAL OF SOCIAL SCIENCES REVIEW (JSSR)

Beyond the Gravity: Exploring Legal Position of Astronauts' Well-Being in Space

Sardar Ali Shah ^a Saba Karim ^b Ramesh Kumar ^c Amir Latif Bhatti ^d

Abstract: In space exploration, astronaut health and safety are crucial. The harsh circumstances of space need a thorough review of the laws that protect people who journey there. This article uses the doctrinal approach to examine the particular issues of space missions and how to keep astronauts healthy and safe. The article begins with an overview of these problems and emphasizes astronaut health and safety, then examines how space law has developed to handle health concerns. The examination examines relevant laws, treaties, and regulations for astronaut well-being using a doctrinal perspective. Additionally, it discusses how international space accords and agreements promote astronaut health and safety. The study also examines how national regulations and space agencies enforce these restrictions. A complete review of pre-mission assessments, inflight medical assistance, and post-mission health monitoring follows. Also discussed are astronauts' mental health and support networks. After discussing potential issues, the article recommends additional study and regulation to protect astronauts.

Keywords: Astronauts, Space Law, Health and Safety, Space Environment, International Treaties, Regulations, Medical Support, Psychological Well-Being, Future Considerations

Introduction

Space exploration and settlement require overcoming many hurdles and perils. Prolonged exposure to changing gravitational fields, radiation, confinement, and a hostile environment is a major problem (Waisberg et al., 2022). These particular problems may harm human health and equipment and material performance. Space-bound mechanisms must function in humid terrestrial settings during assembly and certification and ultra-high vacuum environments of outer and deep space. Launch and transfer between these conditions may affect space mission systems and materials. New material development is also difficult in space. Space requires radiation-, temperature-, and vacuum-resistant materials. Space mission success and lifespan depend on developing materials that satisfy these parameters. Space debris and micrometeoroids provide another space issue. Higher space activity has generated a new space environment with hypervelocity debris that threaten spacecraft and equipment (Grossman et al., 2010). Space missions must be safe and functional by preventing and reducing these hazards. Space weather is another major issue. Space weather prediction is essential for human and technology safety. Changes in radiation, solar flares, and geomagnetic disturbances may damage Earth-orbiting satellites and conductive infrastructure (Smith et al., 2022).

Space also challenges medicinal and healthcare methods. Microgravity, limited room, power, and equipment make space medical treatments difficult (Hodkinson et al., 2017). Space medicine demands

^a Assistant Professor, Institute of Law, University of Sindh, Jamshoro, Sindh, Pakistan. Email: sardar.shah@usindh.edu.pk

^b LLM Scholar, Institute of Law, University of Sindh, Jamshoro, Sindh, Pakistan. Email: <u>judge.aamir@gmail.com</u>

^c Investigation Officer, FIA Cybercrimes Wing, Hyderabad, Sindh, Pakistan. Email: <u>peaceloving2015@gmail.com</u>

^d Assistant Sessions Judge, Karachi-South, Sindh, Pakistan. Email: judge.aamir@gmail.com

creative ideas and specialized training. Psychosocial and psychological problems of space are also important. Isolation, confinement, danger, boredom, conflict, and lack of privacy may harm astronauts' mental health. Microgravity is a major health hazard for astronauts. Long-term microgravity exposure may reduce bone mineral density, muscular mass, and cardiovascular function. These modifications increase fractures, muscular atrophy, and cardiovascular disease risk. Microgravity also affects the immune system and incurs enhanced risk for infections. Overcoming these, is crucial in order to prevent any psychological problems which may arise among astronauts on long term space missions. In addition to the above, other astronauts' health risks are radiation. Several studies have shown that interplanetary space travel and so on result in high radiation doses to the astronauts. Cancer and other Radiation Induced Disorders may be as a result of such exposure. Minimizing risk from radiation is important for the safety of the astronauts, and for exploration of the space environment (Walsh, 2021).

Another area where space survival challenges people's ability is when it comes to medical supervision in order to keep astronauts fit throughout space missions. NASSS records the astronaut risk based on the National Academy of Sciences (NAS) Space Science Board and the National Council on Radiation Protection and Measurements (NCRP) radiation protection requirements (Kase, 2016). Misconceptions that repairs of broken human body structures may take time entirely from an astronauts' independence due to remoteness from earthly medical specialists might delay medical actions and raise the need for prevention. Therapies are necessary that could withstand and overcome the unfavourable conditions of space and aliment existing problems of health. The cognition of ISS astronauts has to be understood to plan for the futures space missions: everybody requires a microbiome. The absence of microbial input in the spaceship environment elicits shrinkage of microbiome diversity that has adverse effects on astronauts. Certain ways in which they may affect the human body include digestion, immunity and even well-being. There is this need to promote the astronaut's microbiome emission as well as avoid microbial dysbiosis during the space missions. Candidature: cosmopersone isolation and sleep disturbance can be common problems which may have an impact on health and safety of a mission. The possibilities of space and circadian disruptions may thing lead to sleep difficulties and fatigue. Sleep and measures to contribute to the astronaut's overall health and sufficient sleep during space missions (Wu et al., 2018).

The legal regulation of astronauts health and safety is vital in space law, and adopting doctrinal research methodologies, this article examines the legal provisions, covenants, and ordinances affecting astronauts' health and safety. To explore the legal landscape protecting the space travellers, the research looks into historical overview, international conventions, state laws and access to medical assistance. The article starts with elaboration of the health and medical risks associated with manned space exploration. Space environment difficulties are then explored before setting the stage for a more comprehensive examination of space law to trace its evolution in order to meet health requirements. The following sections are devoted to international space treaties and agreements, national legislation, medical aid, health control, and astronaut's psychological issues. They have a special part on future questions and on calling for research and changes in the legislation for astronauts' protection. The paper concludes by summarizing major results and underlining space law's importance in spacefarers' future.

Historical Context of Space Law and Astronaut Health

Space law development has proven vital to astronaut safety and space regulation. Space law has evolved via international collaboration and regulation. Analyzing international space law shows the need of international collaboration in space. Space law has evolved to standardize legal terms, approve private space law, encourage private capital involvement, and regulate space tourist rights and interests. These tasks are crucial for space law development and efficacy (Halunko, 2019).

Space law affects astronaut safety in several ways. Space activity control is critical for astronaut safety during human spaceflight. The Space Treaty and Rescue Agreement protects human spaceflight. The militarization of space has generated concerns about space management and the necessity for clear policies to protect astronauts and human space exploration. Sleep and circadian rhythm abnormalities may harm astronaut health and performance during long-term space trips, raising concerns about cardiovascular

safety. For passenger radiological safety, recreational spaceflight public dose limit laws and recommendations are essential (Long & Hayes, 2023).

Space law also affects natural resource management. The administration of celestial bodies and the control of their natural resources need a strong legal structure to promote international space law ideals. A sustainable space future requires studying the relationship between international environmental law, space law, and the existing situation in outer space. The importance of space law to astronaut safety goes beyond physical flight. Regulating commercial space activity ensures astronaut safety and prevents imperialism. Legal, ethical, and technical challenges arise when using artificial intelligence in space to protect astronauts and human rights. For space drug countermeasures to be effective and safe, pharmacogenomics must personalize drug treatment to each astronaut (Aziz et al., 2022).

Space missions must provide astronauts with a food system that matches their nutritional needs while considering acceptability, safety, shelf life, and dependability. The feeding system must meet astronauts' demands for long-duration, deep space travel (Douglas et al., 2020). Exercise may prevent mental problems and cognitive deficits during protracted space and isolation missions. Space missions depend on crew health and safety. Space travel should reduce immune dysregulation. Space radiation may cause neurocognitive issues and damage the central nervous system (Jandial et al., 2018).

Space travel poses a considerable health risk, especially from cosmic radiation. Radiation exposure increases the risk of cancer and cataracts, particularly for long-term space missions beyond the Earth's magnetic field. Solar flares and intense proton radiation also threaten astronauts (Rust, 1982). Space missions also include cardiovascular health. Astronauts have no elevated risk of cardiovascular disease throughout time. However, the cardiovascular consequences of microgravity and ionizing radiation require additional study. The issue of microbial pathogenicity in space missions requires technical advancements to minimize health hazards for astronauts. Understanding microbiome dynamics during space missions and its implications for future crewed trips beyond Earth is crucial (Mahnert et al., 2020).

Implementing an integrated system health management strategy that can identify failure precursors and allow condition-based maintenance may address these health and safety concerns (Xu & Xu, 2012). Structural health monitoring technology may also protect space structures. The combination of AI and space technology has also shaped space law and safety. AI in space technologies creates legal, ethical, and technical challenges. The reference authors recommended a UN-sponsored international treaty to regulate the use of artificial intelligence and space technologies, which would establish a law enforcement agency to monitor AI and observe basic human rights in the specified area (Soroka & Kurkova, 2019). This milestone emphasizes the necessity for comprehensive AI laws in space. Overall, these space legal achievements and AI integration in space technology have molded modern space law and safety requirements. They discussed issues including unmanned spacecraft, space drones, and AI in space. These accomplishments enabled the creation of a strong legislative foundation for space safety and regulation. Several major events affected modern space law and safety rules. Space law progress is a milestone. Space law has adapted to face difficulties from unmanned spacecraft and drones. This development has identified advanced space law tasks like standardizing legal space terms, approving private space law, encouraging private capital involvement in space programs, and regulating space tourists' rights and legitimate interests (Halunko, 2019). These milestones shaped space activity law.

International Space Treaties and Agreements

Among the most important international space treaties are the Outer Space Treaty, Rescue Agreement, Liability Convention, Registration Convention, and Moon Agreement (Lisk & Zwart, 2019). These treaties establish global outer space law and cover peaceful space use, astronaut rescue and return, liability for space object damage, space object registration, and Moon and other celestial body exploration and use. The Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies, is the foundation of international space law. Over 100 nations have ratified it since 1967. The pact supports peaceful space usage, forbids the deployment of nuclear weapons and other weapons of mass destruction in orbit or on celestial bodies, and encourages international space exploration and study (Sheer & Li, 2019).

The 1968 Rescue Agreement provided for the rescue, return, and return of astronauts, astronauts, and objects launched into space. States must help rescue and return astronauts in peril and space objects and their components. The 1972 Liability Convention defined international liability for space object damage. It holds states liable for harm of their space objects to other space objects, aircraft, and people or property on Earth. Since 1975, the Convention on Registration of Objects Launched into Outer Space has been in effect. States must register their space objects with the UN and submit launch and orbital characteristics (Lisk & Zwart, 2019).

Lisk & Zwart (2019) mention the 1979 Moon Agreement, which governed states' activities on the moon and other celestial bodies. It governs the exploration and utilization of the Moon and other celestial planets, including benefit sharing, lunar environment protection, and the ban on WMDs. These accords regulate space operations and promote international collaboration in space exploration and utilization. They regulate the peaceful and responsible use of space, astronaut safety, and space object responsibility and registration. Not all nations have accepted or acceded to these accords, and there are continuing disagreements over their interpretation and implementation. Space-related international accords and conventions exist in addition to these main treaties. The Limited Test Ban Treaty bans atmospheric, space, and undersea nuclear weapons testing (Grimal & Sundaram, 2018). Due to rocket exhaust emissions' effects on atmospheric composition and temperature, the Montreal Protocol on Substances that Deplete the Ozone Layer affects the space industry The Artemis Accords, albeit not a treaty, are principles and standards for international cooperation on sustainable human space exploration. These international space treaties and accords provide the legal foundation for space operations and encourage governments to cooperate in space research and utilization. They cover peaceful space usage, accountability for space object damage, astronaut rescue and return, and celestial body exploration and utilization. However, governments must continue to negotiate to resolve new issues and assure the successful implementation of existing accords in the continually changing space environment. Space treaties are vital to astronaut health and safety. Space's severe temperatures, low air pressure, radiation, noise, vibration, lack of oxygen, and intense acceleration and deceleration forces pose health concerns to astronauts. These hazards may include cardiovascular, lymphatic, and ophthalmic difficulties. Long-duration space missions may also harm astronauts' microbiomes (Voorhies et al., 2019).

National Aeronautics and Space Administration NASA takes precautions to protect astronauts' health, well-being, and performance. Scientists try to alter the gut microbiota to promote astronaut health (Siddiqui et al., 2021). Protecting astronauts from space radiation may also include long-term safe medications. Space medicine is crucial to tackling space flight health hazards. Flight surgeons create mitigation measures to protect astronauts' health, safety, and performance in space. The NASA Twins Study illuminates astronaut health hazards during long-duration space missions (Garrett-Bakelman et al., 2019).

Space radiation is a major health danger for astronauts beyond low Earth orbit. Health concerns from high-energy cosmic radiation include cardiovascular disease and cancer. Research has shown possible deep space radiation impacts on the vascular endothelium (Delp et al., 2016). Analyses of shielding materials protect humans from intense particle radiation in deep space. Space environment impacts astronauts' circadian rhythm and sleep patterns, which may impair physiology and performance. Astronauts must understand how the space environment affects the circadian timing system and sleep to be healthy (Guo et al., 2014).

International treaties must address health and safety to safeguard employees and public health. Several treaties address these problems by giving principles and legislation to protect persons in different fields. Treaties' health and safety requirements include minimum standards and norms. These rules strive to standardize workplace health and safety worldwide. In trade agreements, advocates for a minimum floor of occupational health and safety requirements to safeguard employees. This prevents harmful working circumstances and prioritizes worker health. Harmonizing regulatory standards and processes is necessary in addition to basic norms. says treaties should foster "upward harmonization" of Occupational Health and Safety Administration (OHSA) standards. This implies governments should improve their procedures and

meet tougher criteria to protect employees. Compliance and accountability need effective enforcement of national and international legislation (Brown, 2005).

Treaties' health and safety obligations require transparency and public engagement. stresses the need of openness in OHSA enforcement. This increases responsibility and informs employees of their rights. Public involvement in health and safety planning and execution may improve results and compliance. Treaties' health and safety provisions include financial and technical aid. suggest that trade partners should acknowledge economic disparities and help overcome economic disincentives and resource shortages. This aid may help nations enhance health and safety and safeguard employees regardless of their economy. The success of health and safety rules depends on their enforcement. emphasize enforcement in the EU/UK Trade and Co-operation Agreement. They say the UK may avoid its treaty health and safety obligations due to the absence of serious retaliation. This emphasizes the necessity for strong health and safety enforcement (Moretta et al., 2022).

Healthcare employees need occupational health and safety. Highlight the importance of healthcare professionals following OSHA guidelines. They claim that staff monitoring and reevaluation must address compliance difficulties. For health and safety compliance, continual monitoring and assessment are essential (Faller et al., 2018).

National Regulations and Space Agencies

National rules are vital to astronaut health and safety. These requirements address astronaut health, medical monitoring, food safety, sleep management, physical exercise, and work safety. Astronaut health and safety need medical monitoring. Astronauts must undergo extensive medical exams and supervision under NASA requirements. These exams detect possible health risks and ensure prompt treatment. Medical surveillance of astronauts' optic nerve heads and associated tissues includes optical coherence tomography (Patel et al., 2018). Astronaut health also depends on food safety. To guarantee astronaut food safety, national rules like Hazardous Analysis Critical Control Points (HACCP) are in place. The NASA requested the HACCP system to assure astronaut food safety (Hyde et al., 2016). These laws avoid foodborne infections and provide astronauts' dietary demands in space.

Astronauts need sleep management to be healthy. Astronauts must have enough sleep and adequate quality, according to national guidelines. Astronauts and the general public need enough sleep for normal physical and mental health, cognition, and job performance. National rules create sleep patterns and propose remedies for space mission sleep issues. Maintaining astronaut health requires regulating physical activity. National rules encourage space mission physical activity and safety by providing equipment and exercise instructions. These limitations reduce the harmful effects of microgravity on muscle and bone health and keep astronauts healthy. National safety rules safeguard astronauts from work-related injuries and diseases. These rules include occupational safety, risk management, and PPE usage. They also stress the importance of engineers and leadership in preventing astronaut injuries (Annan et al., 2015).

National rules are crucial to astronaut health and safety. These requirements address astronaut health, medical monitoring, food safety, sleep management, physical exercise, and work safety. Space agencies can reduce health hazards and protect astronauts by following these laws. National space agencies are vital to astronaut safety. National Aeronautics and Space Administration (NASA), European Space Agency (ESA), China National Space Administration (CNSA), and others have taken steps to reduce space flight dangers such radiation exposure, sleep difficulties, vision impairment, and cardiovascular illness. Astronauts worry about radiation exposure during space missions. Different national space agencies use non-aligned methods to reduce astronauts' lifetime radiation exposure. This misalignment hinders multinational exploratory-class mission planning (Walsh et al., 2021).

Space astronauts often worry about sleep problems. NASA understands the need of adequate sleep in space missions. Space sleep is a new medical frontier, and researchers are working to help astronauts get enough rest (Pandi-Perumal & Gonfalone, <u>2016</u>). Space organizations like NASA and ESA prioritize visual impairment as a medical issue. This disease, originally called visual impairment and intracranial

pressure syndrome, might affect astronauts' vision and future long-duration interplanetary journeys, including Mars (Wostyn et al., 2018).

Deep space radiation also threatens astronauts' cardiovascular health. Astronauts exposed to deep space radiation risk cardiovascular illness due to vascular endothelium impairment, which may cause occlusive artery disease (Delp et al., 2016). Researchers are studying how space radiation affects the cardiovascular system and developing ways to reduce its hazards. Besides these health considerations, national space agencies stress astronaut safety and well-being during space missions. This includes onorbit space station maintainability to protect astronauts and reduce maintenance costs, haptic feedqback systems for extreme environments (Bakke & Fairburn, 2019), and personalized medicine to improve astronaut safety and performance.

Medical Support and Health Monitoring Before, During and After Mission

Pre-mission medical exams and astronaut selection criteria are essential to astronaut health and safety. Mesko (2018) describes the rigorous screening and medical exams used to select spaceflight candidates. Professional reviews, evidence-based medicine, and Shuttle astronaut medical care have shaped assessments. Physical health is a crucial part of pre-mission medical exams. This involves assessing the candidate's cardiovascular system, since astronauts' cardiovascular systems change throughout space missions. To prevent eye diseases like papilledema and choroidal folds, spaceflight requires extensive vision testing. Astronauts may suffer rotator cuff injuries and tibial shaft fractures, making musculoskeletal system examination essential. Mental health is examined during selection together with physical health. Candidates undertake psychometric, performance, and mental pathology testing (Cunha et al., 2021). Astronauts' mental health is crucial to their health and mission success.

Additionally, spaceflight's health impacts are considered in the choosing procedure. Long-term space missions need preventative measure system improvements and novel astronaut diagnosis and treatment approaches. Space radiation may cause double-stranded DNA breaks and raise health risks (Vorobyova et al., 2007). Spaceflight-associated neuro-ocular syndrome (SANS) may result from retrograde intracranial clot extension in astronauts. Pre-mission medical exams also include astronaut medication usage. Astronauts may take drugs to prevent or cure space-related medical issues and mild complaints. However, present pharmacological remedies have limits because the space environment affects human health and chemical compound stability (Jabara, 2020).

Overall, pre-mission medical exams and astronaut selection criteria evaluate the candidate's physical and mental condition. Expert assessments, evidence-based medicine, and astronaut medical experience have shaped evaluations. The selection method examines cardiovascular health, eyesight, musculoskeletal integrity, mental health, spaceflight impacts, and medicine usage. These assessments and criteria are essential for astronaut health and safety during space missions. Aerospace medicine increasingly relies on in-flight medical care and telemedicine. Research and development have focused on space medicine and medical informatics/telemedicine (Williams et al., 2000). Commercial aviation operations have effectively integrated lower-level telemedicine assistance. Telemedicine has progressed and expanded, bringing new technology and applications that healthcare practitioners may utilize to treat trauma and emergency patients (Prabhakaran et al., 2016).

One research found video-telemedicine helpful for screening emergency air medical evacuation patients. Video-telemedicine decreased unnecessary air medical transportation and expenses (Tsai et al., 2007). US space program telemedicine relies on new information systems and telecommunications technology for in-flight medical treatment. Technical feasibility, clinical viability, and economic affordability have affected healthcare organizations' telemedicine adoption. New information and biomedical technologies make telemedicine-assisted service cooperation and delivery easier. Commercial flight medical crises are a problem. Flight medical situations may need on-board doctors (Nable et al., 2015).

Pre-hospital telemedicine for chronic illness management and non-visit telephone medicine has showed potential. Shore-based prehospital telemedicine improves health outcomes by assisting diagnostic

and treatment choices (Stilz et al., 2022). Prehospital telemedicine, telemedicine-enabled ground and air ambulances, and interhospital telemedicine communication facilitate integrated stroke therapy. Telemedicine has considerable potential to improve medical care, but constraints may limit its use, particularly in remote and low-income populations. Telemedicine systems may provide all citizens access to specialist, high-tech medical care in big nations. Telemedicine is finding new uses in wearables, Artificial intelligence (AI) machine learning, 5G optimization, and Big Data because to the COVID-19 pandemic (Leite et al., 2020).

Telemedicine is especially significant in resource-poor nations during epidemics, enabling a rising variety of applications and technology in many medical specializations and clinical circumstances (Alshakka et al., 2021). Telemedicine training prepares medical students to provide high-quality, secure, and individualized healthcare. Telemedicine has grown due to medical students and residents adjusting to the COVID-19 pandemic. Aviation medicine has investigated telemedicine for in-flight crises. Telemedicine can treat hypoglycemia-related mental state (Niknafs et al., 2018). Telemedicine improves access to neurological emergency treatment and lowers healthcare expenses. Telemedicine has treated COVID-19 patients remotely, maximizing medical resources and providing ongoing care (Dongsu et al., 2020).

Telemedicine may help manage chronic illnesses and emergency care in epidemics (Ohannessian, 2015). To train future doctors to utilize telemedicine, family medicine clerkships have experimented with telemedicine skills. Telemedicine in veterinary medicine improves patient care and access. Sports medicine uses telemedicine for follow-up monitoring and prevention. Telemedicine apps link patients to emergency department clinicians. Telemedicine has improved patient treatment and reduced patient transport in rural or distant emergency rooms. Telehealth's cost-effectiveness in pre-hospital treatment suggests it might change emergency medical services (Langabeer et al., 2016).

Astronauts need post-mission health monitoring and therapy to recuperate physically and physiologically. These procedures address spaceflight-related physiological alterations include muscle atrophy, orthostatic intolerance, bone demineralization, and neurovestibular symptoms (Payne et al., 2007). Rehabilitation often restores muscle strength, neuromuscular control, and lumbo-pelvic stability. Recovery activities that are done after the flight Returns are important to the astronauts as well as the mission. Exercise may be part of post-mission rehabilitation. The bed rest research show that exercise counter acts the effects of bed rest and muscle wasting. Flexor/ extensor musculature of the lumbo-pelvic region and enhanced neuromuscular co-ordination require exercise intervention. Casting and other individual approaches may also assist astronauts with the musculoskeletal back program and regaining points. They may enhance such aspects as balance, coordination, and proprioceptionAmong the benefits the following can be listed: Preventing the post-flight damage, especially in the instantaneous post-landing and walking/other activities needs the right rehabilitation handling (Green & Scott, 2018).

There is need for medical checks, and exercise therapy primarily after the astronauts are done with their mission. Real-time health monitoring devices help monitor astronauts' rates and rhythms, sleep patterns, exercise, and alteration physically (McGregor, 2021). It may recognize standard departural and poor medical events of these systems. A tailored strategy may define baseline characteristics for every individual in that crew and the slightest deviation is immediately attended to. More specifically, genomics and proteomics may also bring out molecular changes during space missions and or periods of rehabilitation. These technologies may identify biomarkers, as well as circulating exosomes that can represent astronaut health and subsequently inform the necessary individualized rehabilitation therapies.. Extended free-flying affects the body's, meaning that microgravity can change the spinal column and cause muscle atrophy and thus increase the danger of spine harm when engaging in in-orbit activity or during rehabilitation after flight. Application of effective preventive and rehabilitation measures for crews staying for a long time in space requires knowledge of upper limb response to microgravity conditions. Microgravity may negatively affect the crew microbiota and the astronauts' health should they be exposed to a clean spacecraft for long hours (Voorhies & Lorenzi, 2016).

The problem of health monitoring and rehabilitation after the mission also require multifaceted solution. It is important for physiotherapists, physical medicine and rehabilitation specialists to develop and implement the astronaut-targeted rehabilitation programs. For medical mission effectiveness and

impact on local providers and health systems, healthcare providers, community stakeholders, and host health systems need to work together. Remote healthcare and assistance during post-mission rehabilitation might be provided through telehealth (Lyerla et al., 2023).

Psychological Well-Being of Astronauts

One of the emerging challenges mentioned most frequently in long-distance space missions is mental health problems. Adverse effects of space environment on mental health of astronauts . These missions require management of moods, having a stable mind and working together. Possible implications of space atmosphere are that mental aspect of astronauts may be impaired. Space journeys to the deep space might have negative impact on the health of the astronauts (Zheng et al., 2015). Restrictions in weightless and limited space lead astronauts to develop efficient workout programs minimizing risks to health and mental states. Situation in physical environment is also very important for mental health and well being. Improving the administration of mental health treatment in space is a function of comprehending space and place . Skin microbiome is another consideration for the long-term space missions. Here it is possible to state that skin microbiota can influence the astronauts' mental state during these operations. Microbiota over the long haul of space travel depends on the gut-brain axis might affect the mental well-being of any astronaut (Sajdel-Sulkowska, 2021).

Availability of green space reduces the rates of physical as well as mental ailments. Research suggests that green spaces improve well-being and prevent depression (Batterham et al., 2022). The link between urban green space and mental health is also gaining attention. Public places and parks may affect mental health. Public space quality and green/social space utilization moderate the association between local environmental features and mental health. Psychological characteristics like life satisfaction and resilience may also affect mental health in the built environment. Many studies have shown that the built environment affects mental health and well-being, both directly and indirectly. Public space quality and green space availability may affect mental health (Hadavi, 2017).

Besides the physical environment, social and interpersonal aspects affect mental health in space. Long-duration space missions need teamwork and cooperation, which might affect astronauts' mental health (Landon et al., 2018). Frequent travel may affect families psychologically. Tourism research has also examined passengers' job levels and authenticity. Changing performance patterns, habits, roles, and routines may reduce these consequences. OT may help astronauts with sleep issues, which are frequent during space missions. Drugs, light, and crew selection may help spaceflight crews sleep (Wu et al., 2018). Long-duration space missions need teamwork and cooperation for astronauts' health. Psychological support workers and phone and real-time talks with family and friends may increase morale and mood. Brain-computer interface (BCI) technology can also monitor and characterize astronauts' mental states, improving their mental health (Hummadi & Chatterjee, 2021).

Space radiation's mental health effects on astronauts are also relevant. Space radiation raises the risk of central nervous system and tissue degeneration (Chancellor et al., 2014). Astronauts' mental health requires space radiation mitigation. The gut microbiota affects astronauts' health in space. Astronauts' gut microbiomes and other physiological alterations have changed. Probiotics and other gut microbiome therapies may improve astronauts' physical and mental health. Another vital part of astronaut health is exercise. Traditional Tai Chi Chuan (TCC) or Taijiquan may assist astronauts adapt with microgravity and preserve physical and physiological health (Chu & Szu, 2020). Astronauts may maintain their health through aerobic and strength training. Psychological resilience helps astronauts adjust to space missions and stay healthy. Resilience-building training may assist astronauts handle stress and strain during space missions. Additionally, self-compassion, social support, and culture impact psychological well-being (Palinkas, 2003).

Legal and ethical issues are essential for astronauts' mental health during space missions. Ensure astronauts' mental health by addressing space travel's severe circumstances. This synthesis will explore legal and ethical issues related to astronauts' psychological well-being, using chosen sources. Astronauts' rights and well-being are serious legal issues. The UN Office for Outer Space Affairs (UNOOSA) sets rules for peaceful space exploration and usage (Jabara, 2020). The following recommendations lay great

emphasis upon the physical and the psychological well-being of the astronauts and the need for proper medical care and attention when the astronauts are working in space. NASA has also signed rules that protect astronauts' and their fragile state (Rozanov et al., 2022). These regulations include the psychological treatment of astronauts during and following space flights.

Ethical issues also create a healthy mind for the astronauts. The ethical concept of beneficence requires behavior that promotes good for persons. The concept inherent in this idea is that space agencies have to support and provide for the psychological needs of astronauts. This entails decreasing psychosocial pressures like; solitary confinement, and limited access to recognizable environment during extravehicular space flights (Robinson et al., 2006). NASA has looked into using plants and greenhouses to provoke the astronauts and bring a memory of home. Non-maleficence also means weighing duties not to harm another person is also equally important. This has for instance include protecting the astronauts from possible psychological injury during space travel. Space motion sickness and psychological anguish may result from space mission extremes. Providing psychological support and establishing resilience and coping techniques to avoid and manage these disorders is crucial (Rozanov et al., 2022).

Ethical autonomy promotes astronauts' mental health. Individual autonomy is the freedom to make health and life choices. Due to their highly regulated and supervised surroundings, astronauts may experience autonomy issues in space. Involving astronauts in psychological well-being decisions like support programme formulation and coping strategy selection respects their autonomy. Practical steps may improve astronauts' mental health in addition to legal and ethical ones. These include psychological support programmes and technologies to improve contact with loved ones on Earth. Maintaining touch with family and friends and having psychological support personnel may increase astronaut morale and mood (Landon et al., 2018). During space missions, virtual reality and exergames may enhance astronauts' physical, psychological, and social health.

Future Considerations

Space travel advances might transform human exploration beyond Earth and enable long-duration interplanetary flights and colonies. These advances create health and safety issues for astronauts. This synthesis will examine space flight improvements and their possible effects on astronaut health and safety using pertinent literature. The health effects of space flight on astronauts' gut microbiomes are a worry. Siddiqui et al. (2021) found that space microgravity affects the gut microbiota and angiogenesis. The gut microbiota affects digestion, immunity, and metabolism. Thus, knowing how space flight affects the gut flora is crucial for astronauts' long-term health. Astronauts must survive extreme space conditions on interplanetary trips and settlements. Material science, robotics, power generation, and medical equipment have improved (Blaber et al., 2010). Material science can provide lightweight, robust space flight materials. Robotics can also improve maintenance and repair robots. Technological advances are essential for astronaut safety in the harsh space environment.

Space flight may harm astronauts' cardiovascular, lymphatic, and optical health. Research shows that space flight may harm these systems (Ly et al., 2022). Extended microgravity exposure may cause cardiovascular deconditioning, lymphatic malfunction, and ocular abnormalities. It is therefore important to appreciate these potentials effects of health hats in formulating ways of combating them while in deep space. BCI can be used to enhance space flight health and safety. Using the BCI, astronaut can not only interface with control systems but also in fact operate systems and interfaces directly with their mind. The technology could enhance astronauts, optimize or supervising their health condition and give feedbacks. The technology of BCI can help the space explorers control the environment and get the help in case of emergency.

Radiation is another very serious threat to astronauts' health. Cosmonauts receive different ionizing radiation that can be dangerous for them (Chancellor et al., 2014). For longer-duration space missions, the effects that space radiation have on human health should be evaluated. There are risks associated with radiation, and cumulatively, astronaut safety impact depends atop discovering and implementing correct measures of protection. Microbiota is essential inside and outside the body. Concerns related to microbiota and health indicate that space flight might impact the astronauts. When man is in

space for long stretches, he requires a perfect host microorganisms to keep healthy. It should also be noted that large dynamics of microbiota changes during space missions and the methods for maintaining a healthy population are still an open question. Both the physiological and psychological health of astronauts are of concern among travelers. NASA is aware that missions into space dramatically affect a human's psychological well-being due to factors such as isolation, confinement, and difficult working conditions (Davis et al., 2017). This paper postulates that occupational therapy could benefit astronaut's mental well-being during space exploration. These treatments may enhance mission achievement and protective cooperation of astronauts at various phases of the mission.

Future development of space flight technology may revolutionize human space travel or exploration. These advances cause health as well as safety problems for astronauts. Knowledge of how microgravity impacts the astronaut's gut, their heart, mind, and the radiation levels they are exposed to during space flight is crucial in order to provide countermeasures and ensure their safeguarding during a long term mission. Astronauts' survival in space will also need advances in material science, robotics, and medicine. Changing space law to meet new issues demands a holistic strategy. The references suggest many areas for improvement. Regulating national space activity is crucial. Kerkonian (2021) proposes national space governance and international cooperation to advance space law. This shows that nations must build their own regulatory systems and collaborate to solve problems. Another important subject is space debris control. Space debris presents legal and organizational obstacles, according to Sheer & Li (2019), who propose updating the international space law framework. This involves creating new space debris disposal laws. One of the other crucial problems is the question of space property rights. According to Vries & Hugentobler (2021) we should have global public space quotas and rules of the open space regimes. It is important that rules and rights of space property be very apparent.

As important as it is to prevent space militarization and weaponization is also key. According to Stonis (2022), the ization process is characterised by lack of clarity around appropriate legislation and the problem of space control. These argue that aggressive actions like space weaponization are likely to be on the rise and that space security requires better codification and more enforcement. New space law challenges related to AI and other emerging technologies rise. Sabt & Farooqui (2023) suggested a new approach to address the problems and opportunities of AI and space law integration. This underlines an important requirement for new technology to be introduced into space environment as well as changes to be made on certain rules. These sectors require a complete overhaul and an upgrade of space law ideas. According to Nucera (2019), the body of legal regulation is based on the 1967 Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space (OST). Yet, new space activity requires a critical analysis of norms and the way they can be relevant to the current issues.

Conclusion

This comprehensive narrative of space exploration, health-saving concerns, and of laws governing space examines the last component of this multiple pronged stimulation through challenges, new discoveries, and reactively altering these legal systems to push human experience in beyond earth. It brings out the complexity of space missions, concern for health hazards on the astronauts, legal demands that continue to crop up as well as ethical issues, requiring attention for missions to be accomplished successfully. Exploration and colonization activities require astronaut health, equipment to achieve its set goals and objectives besides catering for the unfriendly environment in space. Contending with changes in gravity field, radiation- confinement, space debris, and micrometeoroids require a complete strategy involving material science and spacecraft engineering. In my opinion, you cannot attend to the simple specialist care and at the same time grasp the way microgravity affects astronaut's body, the impact of radiation, or even psychological pressure. Fighting adverse effects of microgravity on the bones, muscles, heart and regu"atio' of the immune system becomes more significant as man steps into space. Space-bound astronaut's medical requirements include new treatment modalities resistant to the conditions of space and a stable microbiome.

The outcome mission depends on restoring psychological wellness acuity, social isolation, desensitization, privacy loss due to shut isolation and circadian rhythm disruption that hampers one's

sleeping pattern. These complex issues cannot be solved by one or another branch, but by integral started necessary for reconsidering of the space exploration problems with account of astronauts' health condition. Space law also requires continued growth to ensure safe and sound space operations in outer space. It keeps astronauts, uses of natural resources, commercial space ventures and artificial intelligence in space technology safeguarded, which shows countries' considerations. Space law discusses food, immune regulation, radiation, cardiovascular, reproductive health, and astronaut microbiome changes over extended periods of the space mission.

International treaties are important for regulating astronaut health and safety concerns, for defining the obligations, for establishing space utilization policies, for promoting cooperation, for maintaining the peaceful nature of space uses, and for punishing space activity offenders. Space cooperation and space science and medicine developments shown a coherent picture of medical knowledge, technical developments, and sophisticated research of passenger safety in a space environment. Policies, regulations, and even agreements in space are a promise to address astronaut risks and challenges. This article provides information on large issues, technologies, and legal and ethical concerns with implications to manned space exploration. It balances scientific advancement, technological sophistication, moral imperative, and tenacious legal flexibility with total commitment to the welfare, safety, and accomplishment of pioneers venturing into the new frontiers of the universe.

Recommendations

- 1. Develop Comprehensive Space Health Policies: Shipment of specific health policies and regulations concerning astronauts as well as framers for radiation danger and microgravity phenomenon, and mental well-being must be drafted clearly.
- 2. Advance Space Medicine and Technology: Support development of new technologies and treatments specific to the space conditions that would help to prevent or treat space conditions, diagnose and treat illnesses.
- 3. Enhance International Cooperation and Treaties: Modify existing and develop new international conventions, international codes of conduct and other instruments as necessary to facilitate cooperation and maintain order in space activities, and to set baseline requirements for space faring astronaut health.
- 4. Implement Robust Space Debris Management: Enhance space debris mitigation and remova policies and procedures that will guarantee safety in space venture and safety of astronauts and spacecrafts.
- 5. Promote Space Law Education and Awareness: To educate and aware the stakeholders such as astronauts, policymakers, industrialists and everyone who is interested in space law regarding space law and its effects on space exploitation.
- 6. Foster Collaboration Between Space Agencies and Industries: Promote collaboration between space-faring nations, industry and universities and effective sharing of ideas and best practice with common objectives.
- 7. Develop Sustainable Space Resources Utilization: Develop principles and regulations for the utilization of space resources primarily in the context of environmental protection and reduction of the hazards to humans and spacecrafts.
- 8. Address Psychological and Sociological Aspects of Space Travel: Fund studies of psychological/sociological effects of space exploration/misison on astronaut such as isolation, confinement & stress to establish remedies.
- 9. Establish Clear Liability and Insurance Frameworks: Promulgate and advance concrete plans for assuming and sharing space risks and doubtful situations with a focus onto astronauts and spacecraft as well as third-party entities.
- 10. Continuously Review and Update Space Laws and Regulations: Sustainably consider new challenges, inventions and trends in space activities along with new legal and regulatory activities to align the existing space laws and regulations.

References

- Alshakka, M., Badulla, W., Al-Abd, N., & Ibrahim, M. (2021). Importance and opportunities of telemedicine in resource-poor countries during epidemic situation. Current *Journal of Applied Science and Technology*, 1–9. https://doi.org/10.9734/cjast/2021/v40i3331559
- Annan, J., Addai, E., & Tulashie, S. (2015). A call for action to improve occupational health and safety in ghana and a critical look at the existing legal requirement and legislation. *Safety and Health at Work*, 6(2), 146–150. https://doi.org/10.1016/j.shaw.2014.12.002
- Aziz, S., Raza, M., Noreen, M., Iqbal, M., & Raza, S. (2022). Astropharmacy: roles for the pharmacist in space. *Innovations in Pharmacy*, 13(3), 13. https://doi.org/10.24926/iip.v13i3.4956
- Bakke, T. and Fairburn, S. (2019). Considering haptic feedback systems for a livable space suit. *The Design Journal*, 22(sup1), 1101–1116. https://doi.org/10.1080/14606925.2019.1594977
- Batterham, P., Brown, K., Trias, A., Poyser, C., Kazan, D., & Calear, A. (2022). Systematic review of quantitative studies assessing the relationship between environment and mental health in rural areas. *Australian Journal of Rural Health*, 30(3), 306–320. https://doi.org/10.1111/ajr.12851
- Blaber, E., Marçal, H., & Burns, B. (2010). Bioastronautics: the influence of microgravity on astronaut health. *Astrobiology*, 10(5), 463–473. https://doi.org/10.1089/ast.2009.0415
- Brown, G. (2005). Why nafta failed and what's needed to protect workers' health and safety in international trade treaties. *New Solutions a Journal of Environmental and Occupational Health Policy*, 15(2), 153–180. https://doi.org/10.2190/bkvt-2r4d-xhwf-4gdd
- Chancellor, J., Scott, G., & Sutton, J. (2014). Space radiation: the number one risk to astronaut health beyond low earth orbit. *Life*, 4(3), 491–510. https://doi.org/10.3390/life4030491
- Chu, T. and Szu, H. (2020). Biomechanical aspects of tai chi chuan countermeasure against health threats during spaceflight. *Moj Applied Bionics and Biomechanics*, 4(5), 118–123. https://doi.org/10.15406/mojabb.2020.04.00146
- Cunha, C., Oliveira, A., Dantas, G., Castro, L., Jucá, J., Vieira, G., ... & Ribeiro, M. (2021). Neuropsychiatric aspects of the space missions: scientific overview of the last 15 years. *International Physical Medicine & Rehabilitation Journal*, 6(1), 4–9. https://doi.org/10.15406/ipmrj.2021.06.00270
- Davis, J., Burr, M., Absi, M., Telles, R., & Koh, H. (2017). The contributions of occupational science to the readiness of long duration deep space exploration. *Work*, *56*(1), 31–43. https://doi.org/10.3233/wor-162465
- Delp, M., Charvat, J., Limoli, C., Globus, R., & Ghosh, P. (2016). Apollo lunar astronauts show higher cardiovascular disease mortality: possible deep space radiation effects on the vascular endothelium. *Scientific Reports*, 6(1). https://doi.org/10.1038/srep29901
- Dongsu, K., Chu, H., Min, B., Moon, Y., Park, S., Kim, K., ... & Lee, E. (2020). Telemedicine center of korean medicine for treating patients with covid-19: a retrospective analysis. *Integrative Medicine Research*, 9(3), 100492. https://doi.org/10.1016/j.imr.2020.100492
- Douglas, G., Zwart, S., & Smith, S. (2020). Space food for thought: challenges and considerations for food and nutrition on exploration missions. *Journal of Nutrition*, 150(9), 2242–2244. https://doi.org/10.1093/jn/nxaa188
- Faller, E., Miskam, N., & Pereira, A. (2018). Exploratory study on occupational health hazards among health care workers in the philippines. *Annals of Global Health*, 84(3), 338-341. https://doi.org/10.29024/aogh.2316
- Garrett-Bakelman, F., Darshi, M., Green, S., Gur, R., Li, G., Macias, B., ... & Turek, F. (2019). The nasa twins study: a multidimensional analysis of a year-long human spaceflight. *Science*, *364*(6436). https://doi.org/10.1126/science.aau8650
- Green, D. and Scott, J. (2018). Spinal health during unloading and reloading associated with spaceflight. *Frontiers in Physiology*, 8. https://doi.org/10.3389/fphys.2017.01126
- Grimal, F. and Sundaram, J. (2018). The incremental militarization of outer space: a threshold analysis. *Chinese Journal of International Law*, 17(1), 45–72. https://doi.org/10.1093/chinesejil/jmy006
- Grossman, E., Gouzman, I., & Verker, R. (2010). Debris/micrometeoroid impacts and synergistic effects on spacecraft materials. *Mrs Bulletin*, 35(1), 41–47. https://doi.org/10.1557/mrs2010.615

- Guo, J., Qu, W., Chen, S., Chen, X., Lv, K., Huang, Z., ... & Wu, Y. (2014). Keeping the right time in space: importance of circadian clock and sleep for physiology and performance of astronauts. *Military Medical Research*, 1(1), 23. https://doi.org/10.1186/2054-9369-1-23
- Hadavi, S. (2017). Direct and indirect effects of the physical aspects of the environment on mental wellbeing. *Environment and Behavior*, 49(10), 1071–1104. https://doi.org/10.1177/0013916516679876
- Halunko, V. (2019). Space law: the present and the future. *Advanced Space Law*, 3. https://doi.org/10.29202/asl/2019/3/3
- Hodkinson, P., Anderton, R., Posselt, B., & Fong, K. (2017). An overview of space medicine. *British Journal of Anaesthesia*, 119, i143-i153. https://doi.org/10.1093/bja/aex336
- Hummadi, T. and Chatterjee, I. (2021). An era of brain-computer interface: bci migration into space. *Neuroscience Research Notes*, 3(5), 4–12. https://doi.org/10.31117/neuroscirn.v3i5.68
- Hyde, R., Hoflund, A., & Pautz, M. (2016). One haccp, two approaches. *Administration & Society*, 48(8), 962–987. https://doi.org/10.1177/0095399714548266
- Jabara, J. (2020). pharmaceutical solutions for deep space travel and colonization: background, challenges, and possibilities &.. https://doi.org/10.20944/preprints202011.0724.v1
- Jandial, R., Hoshide, R., Waters, J., & Limoli, C. (2018). Space—brain: the negative effects of space exposure on the central nervous system. *Surgical Neurology International*, 9(1), 9. https://doi.org/10.4103/sni.sni_250_17
- Kerkonian, A. (2021). National regulation of space activities., 235–319. https://doi.org/10.1007/978-3-030- 68692-5_7
- Landon, L., Slack, K., & Barrett, J. (2018). Teamwork and collaboration in long-duration space missions: going to extremes.. *American Psychologist*, 73(4), 563–575. https://doi.org/10.1037/amp0000260
- Langabeer, J., Champagne-Langabeer, T., Alqusairi, D., Kim, J., Jackson, A., Persse, D., ... & Gonzalez, M. (2016). Cost—benefit analysis of telehealth in pre-hospital care. *Journal of Telemedicine and Telecare*, 23(8), 747–751. https://doi.org/10.1177/1357633x16680541
- Leite, H., Hodgkinson, I., & Gruber, T. (2020). New development: 'healing at a distance' —telemedicine and covid-19. *Public Money & Management*, 40(6), 483-485. https://doi.org/10.1080/09540962.2020.1748855
- Lisk, J. and Zwart, M. (2019). Watch this space: the development of commercial space law in australia and new zealand. *Federal Law Review*, 47(3), 444–468. https://doi.org/10.1177/0067205x19856498
- Long, M. and Hayes, R. (2023). Evaluation of existing public dose limits applied to recreational spaceflight. *Radiation Protection Dosimetry*, 199(5), 482–489. https://doi.org/10.1093/rpd/ncad037
- Ly, V., Velichala, S., & Hargens, A. (2022). Cardiovascular, lymphatic, and ocular health in space. *Life*, 12(2), 268. https://doi.org/10.3390/life12020268
- Lyerla, F., Sobczak, B., & Jennings, G. (2023). An international telehealth experience in guatemala. *Journal of the American Association of Nurse Practitioners*, 35(6), 366–372. https://doi.org/10.1097/jxx.00000000000000849
- Mahnert, A., Verseux, C., Schwendner, P., Koskinen, K., Kumpitsch, C., Blohs, M., ... & Moissl-Eichinger, C. (2020). Microbiome dynamics during the hi-seas iv mission, and implications for future crewed missions beyond earth.. https://doi.org/10.21203/rs.3.rs-44929/v2
- McGregor, C. (2021). A platform for real-time space health analytics as a service utilizing space data relays.. https://doi.org/10.1109/aero50100.2021.9438475
- Mesko, B. (2018). Digital health technologies to support human missions to mars. *New Space*, 6(2), 109–116. https://doi.org/10.1089/space.2017.0035
- Moretta, A., Tombs, S., & Whyte, D. (2022). The escalating crisis of health and safety law enforcement in great britain: what does brexit mean?. *International Journal of Environmental Research and Public Health*, 19(5), 3134. https://doi.org/10.3390/ijerph19053134
- Nable, J., Tupe, C., Gehle, B., & Brady, W. (2015). In-flight medical emergencies during commercial travel. New England Journal of Medicine, 373(10), 939–945. https://doi.org/10.1056/nejmra1409213

- Niknafs, N., Katzer, R., & Wray, A. (2018). In-flight emergency: altered mental status secondary to hypoglycemia. *Journal of Education and Teaching in Emergency Medicine*, 3(3). https://doi.org/10.5070/m533039850
- Ohannessian, R. (2015). Telemedicine: potential applications in epidemic situations. European Research in Telemedicine / La Recherche Européenne en Télémédecine, 4(3), 95-98. https://doi.org/10.1016/j.eurtel.2015.08.002
- Palinkas, L. (2003). The psychology of isolated and confined environments: understanding human behavior in antarctica.. *American Psychologist*, *58*(5), 353–363. https://doi.org/10.1037/0003-066x.58.5.353
- Pandi-Perumal, S. and Gonfalone, A. (2016). Sleep in space as a new medical frontier: the challenge of preserving normal sleep in the abnormal environment of space missions. *Sleep Science*, 9(1), 1–4. https://doi.org/10.1016/j.slsci.2016.01.003
- Patel, N., Pass, A., Mason, S., Gibson, C., & Otto, C. (2018). Optical coherence tomography analysis of the optic nerve head and surrounding structures in long–duration international space station astronauts. *Jama Ophthalmology*, 136(2), 193. https://doi.org/10.1001/jamaophthalmol.2017.6226
- Payne, M., Williams, D., & Trudel, G. (2007). Space flight rehabilitation. American *Journal of Physical Medicine & Rehabilitation*, 86(7), 583–591. https://doi.org/10.1097/phm.ob013e31802b8d09
- Prabhakaran, K., Lombardo, G., & Latifi, R. (2016). Telemedicine for trauma and emergency management: an overview. *Current Trauma Reports*, 2(3), 115–123. https://doi.org/10.1007/s40719-016-0050-2
- Robinson, J., Slack, K., Olson, V., Trenchard, M., Willis, K., Baskin, P., ... & Ritsher, J. (2006). Patterns in crew-initiated photography of earth from iss--is earth observation a salutogenic experience?.. https://doi.org/10.2514/6.iac-06-a1.1.04
- Rozanov, I., Ryumin, O., Karpova, O., Shved, D., Savinkina, A., Kuznetsova, P., ... & Gushin, V. (2022). Applications of methods of psychological support developed for astronauts for use in medical settings. *Frontiers in Physiology*, 13. https://doi.org/10.3389/fphys.2022.926597
- Rust, D. (1982). Solar flares, proton showers, and the space shuttle. *Science*, 216(4549), 939–946. https://doi.org/10.1126/science.216.4549.939
- Sabt, I. and Farooqui, M. (2023). Navigating the convergence of artificial intelligence and space law: challenges and opportunities. *Hightech and Innovation Journal*, 4(1), 55–64. https://doi.org/10.28991/hij-2023-04-01-04
- Sajdel-Sulkowska, E. (2021). Disruption of the microbiota-gut-brain (mgb) axis and mental health of astronauts during long-term space travel., 1415-1436. https://doi.org/10.1007/978-3-030-23810-0 54
- Sheer, A. and Li, S. (2019). Emergence of the international threat of space weaponization and militarization: harmonizing international community for safety and security of space. *Frontiers in Management Research*, 3(3). https://doi.org/10.22606/fmr.2019.33003
- Siddiqui, R., Qaisar, R., Goswami, N., Khan, N., & Elmoselhi, A. (2021). Effect of microgravity environment on gut microbiome and angiogenesis. *Life*, 11(10), 1008. https://doi.org/10.3390/life11101008
- Smith, A., Forsyth, C., Rae, I., Garton, T., Jackman, C., Bakrania, M., ... & Johnson, J. (2022). On the considerations of using near real time data for space weather hazard forecasting. *Space Weather*, 20(7). https://doi.org/10.1029/2022sw003098
- Soroka, L. and Kurkova, K. (2019). Artificial intelligence and space technologies: legal, ethical and technological issues. *Advanced Space Law*, 3. https://doi.org/10.29202/asl/2019/3/11
- Stilz, I., Carvalho, M., Toner, S., & Berg, J. (2022). A prospective investigation of the impact of telemedicine and telemetry on global medical evacuation rates. *Journal of Occupational and Environmental Medicine*, 64(12), 1067–1072. https://doi.org/10.1097/jom.000000000002684
- Stonis, D. (2022). Ambiguities in space law as path towards weaponization of space: the case of the outer space treaty. remarks on regulation of weaponization of outer space by space law. *Copernicus Political and Legal Studies*, 1(4), 74–84. https://doi.org/10.15804/cpls.20224.08
- Tsai, S., Kraus, J., Wu, H., Chen, W., Chiang, M., Li, L., ... & Chiu, W. (2007). The effectiveness of videotelemedicine for screening of patients requesting emergency air medical transport (eamt). *Journal of Trauma and Acute Care Surgery*, 62(2), 504–511. https://doi.org/10.1097/01.ta.0000219285.08974.45

- Voorhies, A. and Lorenzi, H. (2016). The challenge of maintaining a healthy microbiome during long-duration space missions. *Frontiers in Astronomy and Space Sciences*, 3. https://doi.org/10.3389/fspas.2016.00023
- Voorhies, A., Ott, C., Mehta, S., Pierson, D., Crucian, B., Feiveson, A., ... & Lorenzi, H. (2019). Study of the impact of long-duration space missions at the international space station on the astronaut microbiome. *Scientific Reports*, 9(1). https://doi.org/10.1038/s41598-019-46303-8
- Vorobyova, N., Osipov, A., & Pelevina, I. (2007). Sensitivity of peripheral blood lymphocytes of pilots and astronauts to γ -radiation: induction of double-stranded dna breaks. *Bulletin of Experimental Biology and Medicine*, 144(4), 523-526. https://doi.org/10.1007/s10517-007-0367-5
- Vries, W. and Hugentobler, U. (2021). A review of property rights in outer space from a land management perspective. *Journal of Property Planning and Environmental Law*, 13(2), 107-121. https://doi.org/10.1108/jppel-02-2021-0011
- Waisberg, E., Ong, J., Paladugu, P., Kamran, S., Zaman, N., Lee, A., ... & Tavakkoli, A. (2022). Challenges of artificial intelligence in space medicine. *Space Science & Technology*, 2022. https://doi.org/10.34133/2022/9852872
- Walsh, L., Hafner, L., Straube, U., Ulanowski, A., Fogtman, A., Durante, M., ... & Schneider, U. (2021). A bespoke health risk assessment methodology for the radiation protection of astronauts. *Radiation and Environmental Biophysics*, 60(2), 213–231. https://doi.org/10.1007/s00411-021-00910-0
- Williams, D., Bashshur, R., Pool, S., Doarn, C., Merrell, R., & Logan, J. (2000). A strategic vision for telemedicine and medical informatics in space flight. *Telemedicine Journal and E-Health*, 6(4), 441–448. https://doi.org/10.1089/15305620050503924
- Wostyn, P., Winne, F., Stern, C., & Deyn, P. (2018). Dilated prelaminar paravascular spaces as a possible mechanism for optic disc edema in astronauts. *Aerospace Medicine and Human Performance*, 89(12), 1089–1091. https://doi.org/10.3357/amhp.5095.2018
- Wu, B., Wang, Y., Wu, X., Liu, D., Xu, D., & Wang, F. (2018). On-orbit sleep problems of astronauts and countermeasures. *Military Medical Research*, 5(1). https://doi.org/10.1186/s40779-018-0165-6
- Xu, J. and Xu, L. (2012). Integrated system health management –based condition assessment for manned spacecraft avionics. *Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering*, 227(1), 19–32. https://doi.org/10.1177/0954410011431395
- Zheng, C., Kuhn, W., & Natarajan, B. (2015). Ultralow power energy harvesting body area network design: a case study. *International Journal of Distributed Sensor Networks*, 11(10), 824705. https://doi.org/10.1155/2015/824705