Impact of Economic Progress, Energy Consumption and Carbon Dioxide Emissions on Life Expectancy: Evidence from Asia and Africa

Authors

  • Sabah Younus
  • Aisha Khursheed
  • Naureen Afzal

DOI:

https://doi.org/10.54183/jssr.v2i3.115

Keywords:

Economic Progress, Life Expectancy, Carbon Dioxide Emissions, Renewable & Non-Renewable Energy, Quantile Regression Model

Abstract

In today's society, determining living standards requires taking into account life expectancy. Thus, a key concern for policymakers is the analysis of life expectancy characteristics. The life expectancy is evaluated using the panel quantile regression model across many quantile ranges, including 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95. From 2000 through 2018, the study examines the effects of economic progress, energy use, and carbon dioxide releases on life expectancy across Asia and Africa. The analysis shows that CO2 emanations and life expectancy are intimately linked across all life expectancy quantiles. The impact of economic progress on life expectancy is negative in all except 0.95 quantiles. Additionally, except for the higher quantile (0.95), there is a negative and significant correspondence between hydroelectricity usage and life expectancy in the low and higher quantile series. The findings have thus shown beneficial impacts on life expectancy in low, medium, and greater quantities of petroleum and other liquid consumption. The outcomes suggest boosting the corporate structure to increase productivity and development. However, implementing a clean form of energy sources, i.e., renewable energy and technological efforts, need to employ excellently, contributing to environmental sustainability and a healthy ecosystem.

References

Acemoglu, D., & Johnson, S. (2007). Disease and development: the effect of life expectancy on economic growth. Journal of Political Economy, 115(6), 925-985. https://doi.org/10.1086/529000

Agbanike, T. F., Nwani, C., UWAZIE, U., Uma, K. E., ANOCHIWA, L., IGBERI, C., ... & Ogbonnaya, I. O. (2019). Oil, environmental pollution and life expectancy in Nigeria. Applied Ecology and Environmental Research, 17(5), 11143-11162.‏ https://doi.org/10.15666/aeer/1705_1114311162

Ahmad, M., Ur Rahman, Z., Hong, L., Khan, S., Khan, Z., & Naeem Khan, M. (2018). Impact of environmental quality variables and socio-economic factors on human health: Empirical evidence from China. Pollution, 4(4), 571-579.‏ https://doi.org/10.22059/POLL.2018.252214.391

Alexander, M., Harding, M., & Lamarche, C. (2011) Quantile regression for time-series-cross-section data. International Journal of Statistics and Management System, 6(1-2), 47-72.

Arminen, H., & Menegaki, A. N. (2019). Corruption, climate, and the energy-environment-growth nexus. Energy Economics, 80, 621-634. https://doi.org/10.1016/j.eneco.2019.02.009

Asghar, M. M., Wang, Z., Wang, B., & Zaidi, S. A. H. (2020). Nonrenewable energy—environmental and health effects on human capital: empirical evidence from Pakistan. Environmental Science and Pollution Research, 27(3), 2630-2646. https://doi.org/10.1007/s11356-019-06686-7

Breitung, J. (1999) The Local Power of Some Unit Root Tests for Panel Data. Discussion Papers, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.

Cervellati, M., & Sunde, U. (2011). Disease and development: The role of life expectancy reconsidered. Economics Letters, 113(3), 269-272.‏‏ https://doi.org/10.1016/j.econlet.2011.08.008

Chetty, R., Stepner, M., Abraham, S., Lin, S., Scuderi, B., Turner, N., ... & Cutler, D. (2016). The association between income and life expectancy in the United States, 2001-2014. Jama, 315(16), 1750-1766.‏ https://doi.org/10.1001/jama.2016.4226

Choi, I. (2001). Unit root tests for panel data. Journal of International Money and Finance, 20(2), 249-272. https://doi.org/10.1016/S0261-5606(00)00048-6

Crimmins, E. M., & Zhang, Y. S. (2019). Aging populations, mortality, and life expectancy. Annual Review of Sociology, 45, 69-89.‏ https://doi.org/10.1146/annurev-soc-073117-041351

Damette, O., & Delacote, P. (2012) On the economic factors of deforestation: What can we learn from quantile analysis?. Economic Modelling, 29(6), 2427-2434. https://doi.org/10.1016/j.econmod.2012.06.015

Davino, C., Furno, M., & Vistocco, D. (2013). Quantile regression: Theory and applications. John Wiley & Sons.

Dogan, E., Altinoz, B., & Tzeremes, P. (2020). The analysis of ‘Financial Resource Curse’hypothesis for developed countries: Evidence from asymmetric effects with quantile regression. Resources Policy, 68, 101773. https://doi.org/10.1016/j.resourpol.2020.101773

Emamgholipour, S., & Asemane, Z. (2016). Effect of Governance Indicators on Under-Five Mortality in OECD Nations: Generalized Method of Moments. Electronic physician, 8(1), 1747.‏ https://doi.org/10.19082/1747

Felice, E., Andreu, J. P., & D’Ippoliti, C. (2016). GDP and life expectancy in Italy and Spain over the long run: A time-series approach. Demographic Research, 35, 813-866.‏ https://doi.org/10.4054/DemRes.2016.35.28

Gitobu, C. M., Gichangi, P. B., & Mwanda, W. O. (2018). The effect of Kenya's free maternal health care policy on the utilization of health facility delivery services and maternal and neonatal mortality in public health facilities. BMC pregnancy and childbirth, 18(1), 77-77.‏ https://doi.org/10.1186/s12884-018-1708-2

Hadri, K. (2000). Testing for stationarity in heterogeneous panel data. The Econometrics Journal, 3(2), 148-161. https://doi.org/10.1111/1368-423X.00043

He, L., & Li, N. (2019). The threshold effect of longevity: life expectancy and economic growth. Applied Economics Letters, 26(14), 1210-1213. https://doi.org/10.1080/13504851.2018.1543932

Hogan, M. J., Leyden, K. M., Conway, R., Goldberg, A., Walsh, D., & McKenna-Plumley, P. E. (2016).

Happiness and health across the lifespan in five major cities: The impact of place and government performance. Social Science & Medicine, 162, 168-176.‏ https://doi.org/10.1016/j.socscimed.2016.06.030

Hu, Y., van Lenthe, F. J., & Mackenbach, J. P. (2015). Income inequality, life expectancy and cause-specific mortality in 43 European countries, 1987–2008: a fixed-effects study. European journal of epidemiology, 30(8), 615-625. https://doi.org/10.1007/s10654-015-0066-x

Im, K. S., Pesaran, M. H., & Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 53-74. https://doi.org/10.1016/S0304-4076(03)00092-7

Koenker, R. (2004) Quantile regression for longitudinal data. Journal of Multivariate Analysis, 91(1), 74-89. https://doi.org/10.1016/j.jmva.2004.05.006

Koenker, R., & Bassett Jr, G. (1978) Regression quantiles. Econometrica: Journal of the Econometric Society, 33-50. https://doi.org/0012-9682(197801)46:1<33:RQ>2.0.CO;2-J

Lamarche, C. (2011). Measuring the incentives to learn in Colombia using new quantile regression approaches. Journal of Development Economics, 96(2), 278-288. https://doi.org/10.1016/j.jdeveco.2010.10.003

Lancaster, T. (2000). The incidental parameter problem since 1948. Journal of Econometrics, 95(2), 391-413. https://doi.org/10.1016/s0304-4076(99)00044-5

Levin, A., Lin, C., Chu, C.-J. (2002) Unit root tests in panel data: Asymptotic and finite-sample properties. Journal of Econometrics 108, 1-24. https://doi.org/10.1016/S0304-4076(01)00098-7

Li, Q., An, L., Xu, J., & Baliamoune-Lutz, M. (2018). Corruption costs live evidence from a cross-country study. The European Journal of Health Economics, 19(1), 153-165.‏ 10.1007/s10198-017-0872-z

Lin, B., & Xu, B. (2018) Factors affecting CO2 emissions in China's agriculture sector: A quantile regression. Renewable and Sustainable Energy Reviews, 94, 15-27. DOI: 10.1016/j.rser.2018.05.065

Lin, R. T., Chen, Y. M., Chien, L. C., & Chan, C. C. (2012). Political and social determinants of life expectancy in less developed countries: a longitudinal study. BMC Public Health, 12(1), 85.‏ https://doi.org/10.1186/1471-2458-12-85

Ma, L. H., Hsieh, J. C., & Chiu, Y. H. (2019). A study on the effects of energy and environmental efficiency at China’s provincial level. Energies, 12(4), 591.‏ https://doi.org/10.3390/en12040591

Maddala, G. S., & Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics, 61(S1), 631-652. https://doi.org/10.1111/1468-0084.0610s1631

Maitra, B. (2018). Investment in physical, human capital, economic growth and life expectancy in Bangladesh: An empirical investigation. South Asia Economic Journal, 19(2), 251-269.‏ https://doi.org/10.1177/1391561418799110

Menon-Johansson, A. S. (2005). Good governance and good health: The role of societal structures in the human immunodeficiency virus pandemic. BMC international health and human rights, 5(1), 4. https://doi.org/10.1186/1472-698X-5-4

Murthy, U., Shaari, M. S., Mariadas, P. A., & Abidin, N. Z. (2021). The Relationships between CO 2 Emissions, Economic Growth, and Life Expectancy. The Journal of Asian Finance, Economics, and Business, 8(2), 801-808. https://doi.org/10.13106/jafeb.2021.vol8.no2.0801

Neyman, J., & Scott, E. L. (1948). Consistent Estimates Based on Partially Consistent Observations. Econometrica, 16(1), 1. https://doi.org/10.2307/1914288

Nkalu, C. N., & Edeme, R. K. (2019). Environmental hazards and life expectancy in Africa: evidence from GARCH model. SAGE Open, 9(1). https://doi.org/10.1177/2158244019830500

Okunade, A. A., & Osmani, A. R. (2020). Effects of life expectancy on economic growth: new results using the flexible Box-Cox power transformation model. Applied Economics Letters, 1-4. https://doi.org/10.1080/13504851.2020.1713976

Oster, Emily, Shoulson, Ira, and Dorsey, E. Ray. Replication data for: Limited Life Expectancy, Human Capital and Health Investments. Nashville, TN: American Economic Association [publisher], 2013. Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 2019-10-11. https://doi.org/10.3886/E112664V1

Ponomareva, M. (2010) Quantile regression for panel data models with fixed effects and small T: Identification and estimation. University of Western Ontario.

Powell, J. L. (1984) Least absolute deviations estimation for the censored regression model. Journal of Econometrics, 25(3), 303-325. https://doi.org/10.1016/0304-4076(84)90004-6

Rajkumar, A. S., & Swaroop, V. (2008). Public spending and outcomes: Does governance matter? Journal of Development Economics, 86(1), 96-111. https://doi.org/10.1016/j.jdeveco.2007.08.003

Rosen, A. M. (2012) Set identification via quantile restrictions in short panels. Journal of Econometrics, 166(1), 127-137. https://10.1016/j.jeconom.2011.06.011

Salehnia, N., Alavijeh, N. K., & Salehnia, N. (2020). Testing Porter and pollution haven hypothesis via economic variables and CO 2 emissions: a cross-country review with panel quantile regression method. Environmental Science and Pollution Research, 1-16. https://doi.org/10.1007/s11356-020-09302-1

Shafi, R., & Fatima, S. (2019). Relationship between GDP, Life Expectancy, and Growth Rate of G7 Countries. International Journal of Sciences, 8(06), 74-79. https://doi.org/10.18483/ijSci.2085

Shi, L., Starfield, B., Kennedy, B., & Kawachi, I. (1999). Income inequality, primary care, and health indicators. J Fam Pract, 48(4), 275-284.‏

Wang, S., & Luo, K. (2018). Life expectancy impacts due to heating energy utilization in China: Distribution, relations, and policy implications. Science of the Total Environment, 610, 1047-1056.‏ https://doi.org/10.1016/j.scitotenv.2017.08.195

Wang, S., Liu, Y., Zhao, C., & Pu, H. (2019). Residential energy consumption and its linkages with life expectancy in mainland China: A geographically weighted regression approach and energy-ladder-based perspective. Energy, 177, 347-357. https://doi.org/10.1016/j.energy.2019.04.099

Wang, Z., Asghar, M. M., Zaidi, S. A. H., Nawaz, K., Wang, B., Zhao, W., & Xu, F. (2020). The dynamic relationship between economic growth and life expectancy: Contradictory role of energy consumption and financial development in Pakistan. Structural Change and Economic Dynamics, 53, 257-266.‏ https://doi.org/10.1016/j.strueco.2020.03.004

World Health Organization. (2014). Aging well” must be a global priority. World Health Organization, Geneva, November 6, 2014.‏

Xu, B., & Lin, B. (2016) A quantile regression analysis of China's provincial CO2 emissions: Where does the difference lie? Energy Policy, 98, 328-342. DOI:10.1016/j.enpol.2016.09.003

Zaman, S. B., Hossain, N., Mehta, V., Sharmin, S., & Mahmood, S. A. I. (2017). An association of total health expenditure with GDP and life expectancy. Journal of Medical Research and Innovation, 1(2), AU7-AU12. https://doi.org/10.15419/jmri.72

Zheng, H., Hu, J., Wang, S., & Wang, H. (2019) Examining the influencing factors of CO2 emissions at city level via panel quantile regression: evidence from 102 Chinese cities. Applied Economics, 51: 3906-3919. https://doi.org/10.1080/00036846.2019.1584659

Zhu, H., Duan, L., Guo, Y., & Yu, K. (2016) The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: evidence from panel quantile regression. Economic Modelling, 58, 237-248. https:// 10.1016/j.econmod.2016.05.003

Downloads

Published

2022-09-30

How to Cite

Impact of Economic Progress, Energy Consumption and Carbon Dioxide Emissions on Life Expectancy: Evidence from Asia and Africa . (2022). Journal of Social Sciences Review, 2(3), 225-235. https://doi.org/10.54183/jssr.v2i3.115